Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 168: 107793, 2024 01.
Article in English | MEDLINE | ID: mdl-38048661

ABSTRACT

As a prevalent RNA modification, 5-methyluridine (m5U) plays a critical role in diverse biological processes and disease pathogenesis. High-throughput identification of m5U typically relies on labor-intensive biochemical experiments using various sequencing-based techniques, which are not only time-consuming but also expensive. Consequently, there is a pressing need for more efficient and cost-effective computational methods to complement these high-throughput techniques. In this study, we present m5UMCB, a novel approach that harnesses a multi-scale convolutional neural network (CNN) in tandem with bidirectional long short-term memory (BiLSTM) to recognize m5U sites. Our method involves segmenting RNA sequences into smaller fragments based on a 3-mer length and subsequently mapping each fragment to a lower-dimensional vector representation using the global vectors for word representation (GloVe) technique. Through a series of multi-scale convolution and pooling operations, local features are extracted from RNA sequences and transformed into abstract, high-level features. The feature matrix is then inputted into a BiLSTM network, enabling the capture of contextual information and long-term dependencies within the sequence. Ultimately, a fully connected layer is employed to classify m5U sites. The validation results from 5-fold cross-validation (5-fold CV) test indicate that m5UMCB outperforms existing state-of-the-art predictive methods, demonstrating a 1.98% increase in the area under ROC curve (AUC) and significant improvements in relevant evaluation metrics. We are confident that m5UMCB will serve as a valuable tool for m5U prediction.


Subject(s)
Neural Networks, Computer , RNA , RNA/metabolism , Uridine , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...